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2-Bromo-3-(trimethylstannyl)cyclopenta-1,3-diene is the key-intermediate for the synthesis of vic-
bromo(trimethylstannyl)bicycloolefins via Diels–Alder reaction with dienophiles. The cycloadducts can
be cyclotrimerized by copper(I) 2-thiophenecarboxylate (CuTC) to afford functionalized benzocyclotrimers.

� 2009 Elsevier Ltd. All rights reserved.
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Highly functionalized benzocyclotrimers are valuable substrates
for supramolecular chemistry.1,2 Even though in recent years the
preparation of such molecules has been greatly improved, the syn-
thesis of precursors bearing the moieties able to impart supramo-
lecular behavior is sometimes troublesome. Cyclotrimerization of
vic-bromo(trimethyltin)olefins mediated by copper 2-thiophene-
carboxylate (CuTC)3 is the most general methodology to accomplish
this reaction.4 The alternative Heck-type methodology of bicyclic
vinyl iodides or bromides fails to afford cyclotrimers in the pres-
ence of further unsaturations.5 The key intermediate 1 for the
synthesis of a general class of substituted cyclotrimers 2 can be
ideally obtained from three approaches: (a) functionalization of
the cycloadduct of cyclopentadiene with the dienophile of interest,
and functionalization of the ethylidene moiety; (b) cycloaddition of
a synthetic equivalent of 1-bromo-2-(trimethyltin)ethyne with a
suitably substituted diene 5; (c) Diels–Alder reaction between a
suitable dienophile 6 and 2-bromo-3-(trimethylstannyl)cyclo-
penta-1,3-diene 7 (Fig. 1).

Strategy (a) provided a large number of cyclotrimers, but it
requires poorly selective reagents, such as bromine or strong bases,
consequently it is scarcely applicable to functionalized prod-
ucts.2c,4,6 1-Bromo-2-(trimethyltin)ethyne7 4, which is critical in
route (b), is a poor dienophile for Diels–Alder reactions, and the
design of an effective synthetic equivalent of 4 is object of research
ll rights reserved.
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in our laboratories.8 The last proposed retro-synthetic disconnec-
tion (c) is based on the availability of the key intermediate 7.9 In
this Letter, we describe a practical synthesis of 7 and its general
utility for the synthesis of variously substituted cyclotrimers.
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Figure 1. Possible strategies leading to precursors of cyclotrimers.
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Scheme 2. Tetrazine route leading to cyclopentadiene 7.
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Scheme 4. Copper-mediated reactions leading to benzocyclotrimers.
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Scheme 1. Synthesis of the stannylated precursor of cyclopentadiene 7.
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The protocol starts with the synthesis of the 2,3-dibromobicy-
clo[2.2.1]hepta-2,5-diene 9 from commercially available norborna-
diene 8, according to reported procedures based on the use of
potassium tert-butanolate/n-butyllithium super-base.10 The tri-
methyltin moiety is introduced at this stage, via a metal-halogen
exchange operated with n-butyllithium at �78 �C (Scheme 1).6b

The resulting vic-bromo(trimethyltin)norbornadiene 10 is
submitted to cycloaddition with dimethyl 1,2,4,5-tetrazine-3,6-
dicarboxylate,11 to afford cycloadduct 11 that undergoes facile
retro-Diels–Alder with loss of nitrogen to furnish intermediate 12
(Scheme 2).12 A second retro-Diels–Alder reaction spontaneously
occurs affording pyridazine 13 and substituted cyclopentadiene 7
which can be easily isolated.13

Cyclopentadiene 7 cannot be stored for a prolonged time; there-
fore, after rapid isolation it is reacted with electron-poor olefins at
room temperature. The cycloaddition is generally smooth and exo-
thermic, furnishing the expected cycloadducts in a few hours
(Scheme 3).14

The PTAD cycloadduct 15 is crystalline and it is readily purified
by fractional crystallization, alternatively product 14 is isolated
after a fast filtration on a short silica-gel pad.15

Cyclotrimers 16 and 17 were obtained after reaction with CuTC
in dry NMP at �20 �C (Scheme 4).16 The syn to anti diastereoselec-
tivity and the yields of the products strictly reflect the steric hin-
drance of the substituents. In detail, 14 furnished a 1:9 syn to
anti mixture of 16: this unfavorable diastereomeric ratio is imput-
able to the steric repulsion between the carboxymethyl moieties
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Scheme 3. Diels–Alder reactions leading to cyclotrimerization precursors.
acting on the plane of the ethylidene fragment of the bicycle.17

More striking is the effect of the endo-cycloadduct of PTAD 15: in
this case, the sole anti-cyclotrimer 17 was obtained.

In conclusion, we proposed an original and versatile protocol for
the preparation of highly functionalized precursors of benzocyclo-
trimers. These compounds were submitted to standard procedure
for the cyclotrimerization, affording two original functionalized
benzocyclotrimers, which will be further investigated as supramo-
lecular scaffolds.
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